Anzeige

| News
Lesedauer: 6 min
13. Juli 2021
Besser Greifen mit Kommissionierrobotern
Bild: Festo SE & Co. KG

Produktion, Lager, Versand – wo Güter hergestellt, gelagert, sortiert oder verpackt werden, wird auch kommissioniert. Es werden also mehrere einzelne Waren aus Lagereinheiten wie Kisten oder Kartons entnommen und neu zusammengestellt. Festo forscht im Projekt Flairop gemeinsam mit dem Karlsruher Institut für Technologie (KIT) und Partnern aus Kanada, um Kommissionierroboter mit verteilten KI-Methoden intelligenter zu machen. Dafür untersuchen sie, wie man Trainingsdaten von mehreren Stationen, aus mehreren Werken oder sogar Unternehmen nutzen kann, ohne dass Beteiligte sensible Unternehmensdaten herausgeben müssen.

„Wir untersuchen, wie möglichst vielseitige Trainingsdaten von mehreren Standorten genutzt werden können, um mit Hilfe von Algorithmen der künstlichen Intelligenz robustere und effizientere Lösungen zu entwickeln, als mit Daten von lediglich einem Roboter“, sagt Jonathan Auberle vom Institut für Fördertechnik und Logistiksysteme (IFL) am KIT. Dabei werden an mehreren Kommissionierstationen Artikel von autonomen Robotern mittels Greifen und Umsetzen weiterverarbeitet. An den verschiedenen Stationen werden die Roboter mit ganz unterschiedlichen Artikeln trainiert. Am Ende sollen sie in der Lage sein, auch Artikel anderer Stationen zu greifen, die sie vorher noch nicht kennengelernt haben. „Durch den Ansatz des verteilten Lernens, auch Federated Learning genannt, schaffen wir den Spagat zwischen Datenvielfalt und Datensicherheit im industriellen Umfeld“, so der Experte.

Leistungsstarke Algorithmen für Industrie und Logistik 4.0

Bisher wurde Federated Learning überwiegend im medizinischen Sektor zur Bildanalyse eingesetzt, wo der Schutz von Patientendaten natürlich einen besonders hohen Stellenwert hat. Daher gibt es für das Training des künstlichen neuronalen Netzes keinen Austausch von Trainingsdaten wie Bilder oder Greifpunkte. Es werden lediglich Teile von gespeichertem Wissen – die lokalen Gewichte des neuronalen Netzes, die sagen, wie stark ein Neuron mit einem anderen verbunden ist – zu einem zentralen Server übertragen. Dort werden die Gewichte von allen Stationen gesammelt und mit Hilfe verschiedener Kriterien optimiert. Anschließend wird die verbesserte Version zurück auf die lokalen Stationen gespielt und der Prozess wiederholt sich. Ziel ist die Entwicklung von neuen leistungsstärkeren Algorithmen für den robusten Einsatz von künstlicher Intelligenz für die Industrie und Logistik 4.0 unter Einhaltung der Datenschutzrichtlinien.

„Im Forschungsprojekt Flairop entwickeln wir neue Wege, wie Roboter voneinander lernen können, ohne sensible Daten und Betriebsgeheimnisse zu teilen. Das bringt zwei große Vorteile: Wir schützen die Daten unserer Kunden und wir gewinnen an Geschwindigkeit, weil die Roboter auf diese Weise viele Aufgaben schneller übernehmen können. So können die kollaborativen Roboter zum Beispiel Produktionsmitarbeiter bei sich wiederholenden, schweren und ermüdenden Aufgaben unterstützen“, sagt Jan Seyler, Head of Advanced Develop. Analytik und Steuerung bei der Festo SE & Co. KG.

Während des Projektes werden für das Training der Roboter insgesamt vier autonome Kommissionierstationen aufgebaut: Zwei am KIT Institut für Fördertechnik und Logistiksysteme (IFL) sowie zwei bei der Festo SE & Co. KG mit Sitz in Esslingen am Neckar.

Start-up DarwinAI und University of Waterloo aus Kanada sind weitere Partner

„DarwinAI freut sich, unsere Explainable (XAI)-Plattform für das FLAIROP-Projekt zur Verfügung zu stellen und über die Zusammenarbeit mit so angesehenen kanadischen und deutschen Forschungsorganisationen sowie unserem Industriepartner Festo. Wir hoffen, dass unsere XAI-Technologie hochwertige Human-in-the-Loop-Prozesse für dieses spannende Projekt ermöglichen wird, das neben unserem neuartigen Ansatz des Federated Learning eine wichtige Facette unseres Angebots repräsentiert. Da wir unsere Wurzeln in der akademischen Forschung haben, sind wir begeistert von dieser Zusammenarbeit und den industriellen Vorteilen unseres neuen Ansatzes für eine große Bandbreite von Fertigungskunden“, sagt Sheldon Fernandez, CEO von DarwinAI.

„Die University of Waterloo ist begeistert, mit dem Karlsruher Institut für Technologie und einem weltweit führenden Unternehmen der Industrieautomation wie Festo zusammenzuarbeiten, um die nächste Generation der vertrauenswürdigen künstlichen Intelligenz in die Fertigung zu bringen. Durch die Nutzung von DarwinAIs Explainable AI (XAI) und Federated Learning können wir KI-Lösungen schaffen, die Fabrikarbeiter bei ihren täglichen Produktionsaufgaben unterstützen, um die Effizienz, Produktivität und Sicherheit zu steigern“, sagt Dr. Alexander Wong, Co-Direktor der Vision and Image Processing Research Group, University of Waterloo, und Chief Scientist bei DarwinAI.

Das Forschungsprojekt Flairop

Das Projekt Flairop (Federated Learning for Robot Picking) ist eine Partnerschaft zwischen kanadischen und deutschen Organisationen. Die kanadischen Projektpartner konzentrieren sich auf Objekterkennung durch Deep Learning, Explainable AI und Optimierung, während die deutschen Partner ihre Expertise in Robotik, autonomes Greifen durch Deep Learning und Datensicherheit einbringen.

  • KIT-IFL: Konsortialführung, Entwicklung Greifbestimmung, Entwicklung automatische Lerndatengenerierung
  • KIT-AIFB: Entwicklung Federated Learning Framework
  • Festo SE & Co. KG.: Entwicklung Kommissionierstationen, Pilotierung in realer Lagerlogistik
  • University of Waterloo (Kanada): Entwicklung Objekterkennung
  • Darwin AI (Kanada): Lokale und globale Netzwerkoptimierung, automatisierte Generierung von Netzstrukturen

Flairop wird vom kanadischen National Research Council (NRC) und dem deutschen Bundesministerium für Wirtschaft und Energie (BMWi) gefördert.

Thematik: Lösungen
| News
Festo SE & Co. KG
http://www.festo.com

Das könnte Sie auch interessieren

Bild: Still GmbH
Bild: Still GmbH
Herstellerumfrage: Flurförderzeuge im Spannungsfeld von E-Commerce und KI

Herstellerumfrage: Flurförderzeuge im Spannungsfeld von E-Commerce und KI

Mit der diesjährigen Herstellerumfrage adressiert dhf Intralogistik die Themen Märkte und Fahrzeugtechnik. Vor dem Hintergrund des boomenden E-Commerce und der rasanten Weiterentwicklung von Technologien wie künstliche Intelligenz und Machine Learning stellen Kunden hohe Anforderungen in Sachen TCO, Effizienz und Sicherheit. Sich den aktuellen Trends bewusst, haben Flurförderzeughersteller schon heute für nahezu jedes
Einsatzszenario die passende Lösung parat.

Bild: Vollert Anlagenbau GmbH
Bild: Vollert Anlagenbau GmbH
Herstellerumfrage: Nahtlose Integration  in Produktion und Logistiker

Herstellerumfrage: Nahtlose Integration in Produktion und Logistiker

Prozessautomatisierung und zustandsbasierte Instandhaltung sind bestimmende Themen bei Krananlagen. Digitale Technologien sorgen für höchste Effizienz, Sicherheit und Zuverlässigkeit im Betrieb. Mit welchen Ansätzen Hersteller aktuell auf diese Entwicklung reagieren und mit welchen Lösungen sie Arbeitsprozesse noch weiter optimieren, zeigt die neueste Marktumfrage von dhf Intralogistik.

Bild: Ifoy Award
Bild: Ifoy Award
Ifoy Awards 2021: Sechs Gewinner!

Ifoy Awards 2021: Sechs Gewinner!

Die Entscheidung ist gefallen, die Preisträger des Ifoy Awards 2021 stehen fest: Im Rahmen einer Preisverleihung im Deutschen Fußballmuseum in Dortmund nahmen Vertreter der Unternehmen Arculus, Cargotec, Idealworks, Interroll Group, Still und Volume Lagersysteme den ‚Oscar der Intralogistik‘ aus den Händen der Laudatoren Thomas Westphal, Bürgermeister der Stadt Dortmund, Gordon Riske, Vorstandsvorsitzender des VDMA Fachverbandes Fördertechnik und Intralogistik und CEO der Kion Group, Prof. Dr. Dr. h.

Anzeige

Anzeige