Besser Greifen mit Kommissionierrobotern
Bild: Festo SE & Co. KG

Produktion, Lager, Versand – wo Güter hergestellt, gelagert, sortiert oder verpackt werden, wird auch kommissioniert. Es werden also mehrere einzelne Waren aus Lagereinheiten wie Kisten oder Kartons entnommen und neu zusammengestellt. Festo forscht im Projekt Flairop gemeinsam mit dem Karlsruher Institut für Technologie (KIT) und Partnern aus Kanada, um Kommissionierroboter mit verteilten KI-Methoden intelligenter zu machen. Dafür untersuchen sie, wie man Trainingsdaten von mehreren Stationen, aus mehreren Werken oder sogar Unternehmen nutzen kann, ohne dass Beteiligte sensible Unternehmensdaten herausgeben müssen.

„Wir untersuchen, wie möglichst vielseitige Trainingsdaten von mehreren Standorten genutzt werden können, um mit Hilfe von Algorithmen der künstlichen Intelligenz robustere und effizientere Lösungen zu entwickeln, als mit Daten von lediglich einem Roboter“, sagt Jonathan Auberle vom Institut für Fördertechnik und Logistiksysteme (IFL) am KIT. Dabei werden an mehreren Kommissionierstationen Artikel von autonomen Robotern mittels Greifen und Umsetzen weiterverarbeitet. An den verschiedenen Stationen werden die Roboter mit ganz unterschiedlichen Artikeln trainiert. Am Ende sollen sie in der Lage sein, auch Artikel anderer Stationen zu greifen, die sie vorher noch nicht kennengelernt haben. „Durch den Ansatz des verteilten Lernens, auch Federated Learning genannt, schaffen wir den Spagat zwischen Datenvielfalt und Datensicherheit im industriellen Umfeld“, so der Experte.

Leistungsstarke Algorithmen für Industrie und Logistik 4.0

Bisher wurde Federated Learning überwiegend im medizinischen Sektor zur Bildanalyse eingesetzt, wo der Schutz von Patientendaten natürlich einen besonders hohen Stellenwert hat. Daher gibt es für das Training des künstlichen neuronalen Netzes keinen Austausch von Trainingsdaten wie Bilder oder Greifpunkte. Es werden lediglich Teile von gespeichertem Wissen – die lokalen Gewichte des neuronalen Netzes, die sagen, wie stark ein Neuron mit einem anderen verbunden ist – zu einem zentralen Server übertragen. Dort werden die Gewichte von allen Stationen gesammelt und mit Hilfe verschiedener Kriterien optimiert. Anschließend wird die verbesserte Version zurück auf die lokalen Stationen gespielt und der Prozess wiederholt sich. Ziel ist die Entwicklung von neuen leistungsstärkeren Algorithmen für den robusten Einsatz von künstlicher Intelligenz für die Industrie und Logistik 4.0 unter Einhaltung der Datenschutzrichtlinien.

„Im Forschungsprojekt Flairop entwickeln wir neue Wege, wie Roboter voneinander lernen können, ohne sensible Daten und Betriebsgeheimnisse zu teilen. Das bringt zwei große Vorteile: Wir schützen die Daten unserer Kunden und wir gewinnen an Geschwindigkeit, weil die Roboter auf diese Weise viele Aufgaben schneller übernehmen können. So können die kollaborativen Roboter zum Beispiel Produktionsmitarbeiter bei sich wiederholenden, schweren und ermüdenden Aufgaben unterstützen“, sagt Jan Seyler, Head of Advanced Develop. Analytik und Steuerung bei der Festo SE & Co. KG.

Während des Projektes werden für das Training der Roboter insgesamt vier autonome Kommissionierstationen aufgebaut: Zwei am KIT Institut für Fördertechnik und Logistiksysteme (IFL) sowie zwei bei der Festo SE & Co. KG mit Sitz in Esslingen am Neckar.

Start-up DarwinAI und University of Waterloo aus Kanada sind weitere Partner

„DarwinAI freut sich, unsere Explainable (XAI)-Plattform für das FLAIROP-Projekt zur Verfügung zu stellen und über die Zusammenarbeit mit so angesehenen kanadischen und deutschen Forschungsorganisationen sowie unserem Industriepartner Festo. Wir hoffen, dass unsere XAI-Technologie hochwertige Human-in-the-Loop-Prozesse für dieses spannende Projekt ermöglichen wird, das neben unserem neuartigen Ansatz des Federated Learning eine wichtige Facette unseres Angebots repräsentiert. Da wir unsere Wurzeln in der akademischen Forschung haben, sind wir begeistert von dieser Zusammenarbeit und den industriellen Vorteilen unseres neuen Ansatzes für eine große Bandbreite von Fertigungskunden“, sagt Sheldon Fernandez, CEO von DarwinAI.

„Die University of Waterloo ist begeistert, mit dem Karlsruher Institut für Technologie und einem weltweit führenden Unternehmen der Industrieautomation wie Festo zusammenzuarbeiten, um die nächste Generation der vertrauenswürdigen künstlichen Intelligenz in die Fertigung zu bringen. Durch die Nutzung von DarwinAIs Explainable AI (XAI) und Federated Learning können wir KI-Lösungen schaffen, die Fabrikarbeiter bei ihren täglichen Produktionsaufgaben unterstützen, um die Effizienz, Produktivität und Sicherheit zu steigern“, sagt Dr. Alexander Wong, Co-Direktor der Vision and Image Processing Research Group, University of Waterloo, und Chief Scientist bei DarwinAI.

Das Forschungsprojekt Flairop

Das Projekt Flairop (Federated Learning for Robot Picking) ist eine Partnerschaft zwischen kanadischen und deutschen Organisationen. Die kanadischen Projektpartner konzentrieren sich auf Objekterkennung durch Deep Learning, Explainable AI und Optimierung, während die deutschen Partner ihre Expertise in Robotik, autonomes Greifen durch Deep Learning und Datensicherheit einbringen.

  • KIT-IFL: Konsortialführung, Entwicklung Greifbestimmung, Entwicklung automatische Lerndatengenerierung
  • KIT-AIFB: Entwicklung Federated Learning Framework
  • Festo SE & Co. KG.: Entwicklung Kommissionierstationen, Pilotierung in realer Lagerlogistik
  • University of Waterloo (Kanada): Entwicklung Objekterkennung
  • Darwin AI (Kanada): Lokale und globale Netzwerkoptimierung, automatisierte Generierung von Netzstrukturen

Flairop wird vom kanadischen National Research Council (NRC) und dem deutschen Bundesministerium für Wirtschaft und Energie (BMWi) gefördert.

Festo SE & Co. KG

Das könnte Sie auch Interessieren

Anzeige

Anzeige

Bild: Toyota Material Handling
Bild: Toyota Material Handling
Weltrangliste Flurförderzeuge
2020/2021

Weltrangliste Flurförderzeuge 2020/2021

Bei der Auswertung der World Industrial Truck Statistics (WITS) stößt man auf Rückschläge und Steigerungen durch Schwankungen der Auftragseingänge und Auslieferungen der Flurförderzeugklassen. Für das Geschäftsjahr 2020 bzw. 2020/2021 haben 20 der beteiligten 27 Unternehmen Rückgänge im Nettoumsatz ihrer Flurförderzeugsparten gemeldet, die wohl auch auf der Corona-Pandemie
beruhen. Sechs Firmen haben über Zuwächse berichtet. Ein weiterer Hersteller, der 2020 in die Weltrangliste zurückgekehrt ist, hat keinen Vergleich zum Vorjahr
angegeben. Letztlich spiegeln die WITS einen wechselnden Bedarf am breiten Spektrum der Flurförderzeugtypen.

Anzeige

Anzeige

Anzeige